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Over the past two decades, Mycobacterium abscessus, a rap-
idly growing species of non-tuberculous mycobacteria, has 
emerged as a major threat to individuals with cystic fibro-

sis (CF) and other chronic lung disease1. Rates of infection of CF 
patients have increased around the world1,2, due to unknown factors, 
potentially including hospital-based person-to-person transmis-
sion3,4 and the emergence of globally spread dominant circulat-
ing clones that are associated with increased virulence and worse 
clinical outcomes5. Infections with M. abscessus are challenging and 
sometimes impossible to treat1,6,7, lead to accelerated inflammatory 
lung damage8,9 and may prevent safe transplantation10. To date, very 
little is known about how M. abscessus infects humans, how it causes 
inflammatory lung damage and how it resists antibiotics11. There is 
thus an urgent need to better understand the pathophysiology of M. 
abscessus, define optimal drug targets and predict the virulence and 
antibiotic susceptibility of clinical isolates.

Historically, systems-level approaches to understanding the 
genetic determinants of bacterial behaviour have been limited to 
evaluating the phenotypes of experimentally created mutant librar-
ies12. However, advances in whole-genome sequencing now allow 
large-scale capture of the genetic and phenotypic diversity of clini-
cal isolates and, consequently, the use of genome-wide association 
studies (GWAS) to define potentially causal variants.

Bacterial GWAS analyses have been successfully deployed to 
identify genetic determinants of antibiotic resistance13 and viru-
lence14, but could potentially be used for any heritable bacterial 
trait. There are, however, several factors that limit the application of 

GWAS approaches to bacteria including: the complex correlations 
and interdependencies of phenotypes, obscuring causality; the pres-
ence of genome-wide linkage disequilibrium leading to ambiguity 
over which variant is causal, necessitating accurate modelling of the 
functional impacts of mutations; and the fact that most bacterial 
phenotypes are complex traits, not explained by monogenetic fea-
tures, but rather functional interactions of larger groups of proteins. 
To advance our pathophysiological understanding of bacteria, we 
therefore need to discover both comprehensive sets of causal genetic 
variants and complex gene–gene (or ‘epistatic’) interactions.

We sought to combine detailed in vitro and in vivo phenotyp-
ing, whole-genome sequencing, computational structural mod-
elling and epistatic analysis to provide a phenogenomic map of  
M. abscessus that might define critical pathways involved in viru-
lence and drug resistance.

Results
Multidimensional phenotyping in M. abscessus. We first char-
acterized 331 clinical M. abscessus isolates across 58 phenotypic 
dimensions exploring five key pathogenic traits: planktonic 
growth in different carbon sources; antibiotic resistance (at early 
and late time points) against a selection of drugs recommended 
by clinical treatment guidelines1; in vitro infection of a human 
macrophage cell line model (differentiated THP-1 cells), moni-
tored using high-content confocal microscopy; in vivo infection of 
Drosophila melanogaster, measuring host survival and inflamma-
tory responses; and clinical outcomes following infection, available 
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through previously collected metadata5 (Fig. 1a and Supplementary 
Figs. 1 and 2).

We examined the relationship between phenotypes, finding cor-
relations within, and sometimes between, pathogenic traits (Fig. 1b 
and Supplementary Fig. 3). To explore whether there were distinct 
patterns of bacterial behaviours, we used experimentally derived 
data to plot individual isolates in phenotypic space, identifying 
three discrete groups, each associated with different clinical out-
comes (Fig. 2a–c and Supplementary Fig. 3). Specific phenotypic 
groups were overrepresented in particular clades and among phylo-
genetic nearest neighbours, indicating that these phenotypic groups 
represent distinct heritable traits (Fig. 2d,e).

Isolates from Group 3 demonstrated the fastest growth in liq-
uid culture and quickest replication within macrophages, caused 
higher mortality in infected macrophages and Drosophila, and the 
greatest antimicrobial and inflammatory responses in flies, whereas 
Group 1 isolates had the opposite characteristics. Group 2 isolates 
had phenotypic behaviours that were intermediate compared with 
the other two groups and were associated with the most favourable 
clinical outcome, potentially related to their macrolide suscepti-
bility (a key determinant of treatment response15,16) explained by 
known erm41 and 23S ribosomal RNA genotypes (Supplementary 
Fig. 3). By contrast, we found that, despite having similar levels of 
macrolide resistance, Group 1 and Group 3 isolates were associated 
with very different clinical outcomes in infected patients, highlight-
ing the importance of phenotypic characteristics other than antimi-
crobial susceptibility in determining prognosis, and suggesting that 
immunogenic isolates might be cleared more easily by patients (as 
reported previously for other pathogenic bacteria17–20).

We next examined the contribution of different colony mor-
photypes and M. abscessus subspecies to the phenotypic analysis. 
Although morphotype transition from smooth to rough, caused 
by disrupted glycopeptidolipid production, has previously been 
linked to increased in vitro and in vivo virulence11,21, the 18% of 
our isolates that were of the rough morphotype were not associated 
with worse patient outcomes, or changes in outcome during mac-
rophage or Drosophila infection (Supplementary Fig. 4). Similarly, 
stratifying by M. abscessus subspecies revealed no differences 
in clinical outcome and only limited differences in phenotypic 
behaviour (apart from the expected difference in clarithromycin 
resistance due to recognized erm41 truncation in M. abscessus sub-
species massiliense; Supplementary Fig. 4). Phenotypic clustering 
and resultant group composition were not affected by considering 
only isolates with a smooth morphotype or from the M. a. absces-
sus subspecies, indicating that our analysis has uncovered unex-
pected phenotypic relationships.

Structure-guided GWAS. To understand the genetic basis for 
these important variations in M. abscessus behaviour, we used 
whole-genome sequence data to perform a GWAS for each pheno-
type (Fig. 3a), evaluating approximately 270,000 genetic variants 
comprising single nucleotide polymorphisms (SNPs), insertions 
and deletions (INDELs). We used mixed models corrected for pop-
ulation structure22 to identify locus effects, as well as uncorrected 
linear models to ensure we captured lineage effects23. In total, we 

identified 1,926 hits (involving 1,000 genes) across 46 phenotypes 
(Supplementary Data). These included previously known genetic 
determinants, such as the 16S and 23S rRNA mutations associ-
ated with constitutive aminoglycoside and macrolide resistance 
(P = 1.3 × 10−75 and P = 1.5 × 10−54 respectively; Supplementary  
Fig. 5), thereby confirming the effectiveness of our approach.

Current GWAS approaches are limited in their ability to accu-
rately identify causal variants by both the presence of linkage 
disequilibrium, which in the case of M. abscessus (as with other bac-
teria24,25) is extensive and genome-wide (Fig. 3a and Supplementary 
Fig. 6), and by a failure to consider the impact of mutations on pro-
tein function26,27.

We therefore applied proteome-wide computational struc-
tural modelling to evaluate the probable functional impact of 
all non-synonymous SNPs across the genome, by applying our 
graph-based machine learning method mutation cut-off scanning 
matrix (mCSM)28 to our comprehensive M. abscessus structural 
database Mabellini29 (Fig. 3b) to identify probably causal mutations.

As an example, the GWAS for intracellular replication of  
M. abscessus within macrophages identified a number of hits at 
genome-wide significance including a cluster of variants within 
mycobactin synthesis genes (Fig. 3c). Mycobactins are mycobac-
terially produced iron chelators that efficiently scavenge iron dur-
ing intracellular growth within macrophages, providing the iron 
essential for mycobacterial protein synthesis and other critical cell 
processes30,31. Structural modelling predicted that one variant, a 
missense mutation (Ile256Thr) in the mycobactin polyketide syn-
thetase (mbtD) gene, was most likely to result in loss of protein 
function and therefore be causally related to the phenotypic change, 
probably through altering the ability of intracellular M. abscessus 
to access iron. To experimentally validate this structural modelling, 
we created an MbtD knockout mutant that demonstrated impaired 
intracellular growth in macrophages, and was able to be comple-
mented by episomal expression of MbtD with the Thr410Ala muta-
tion (predicted by mCSM to be tolerated), but not by the Ile256Thr 
mutation (predicted to be deleterious; Fig. 3d).

Analysis of genome-wide epistasis through mutational co- 
evolution. To understand whether mutations across the genome 
might have co-evolved, indicating potential epistatic interactions 
between genes, we deployed correlation-compressed direct coupling 
analysis (CC-DCA32) on whole-genome sequences from 2,366 clini-
cal isolates of M. abscessus to identify whether variant co-occurrence 
deviated from the expected frequencies based on linkage disequi-
librium33,34, and thus indicates evolutionary co-selection. We evalu-
ated 1012 potential couplings (resulting from approximately 106 
genetic variants) and identified 1,168,913 that were significantly 
enriched (accepting a false discovery rate (FDR) of 10−6; Fig. 4a and 
Supplementary Fig. 6). We found many enriched couplings between 
known or predicted virulence genes (Fig. 4b and Supplementary 
Data), indicating pathogenic evolution of M. abscessus (as identi-
fied previously5,35). We used the ranked outputs from the CC-DCA 
analysis to establish discrete networks of genes that have co-evolved, 
and thus probably interact functionally (Fig. 4c). Many of these 
putative interactions could be recapitulated using orthogonal  

Fig. 1 | Multidimensional phenotyping of M. abscessus. a, Phenotypic variability of clinical M. abscessus isolates was assessed across multiple dimensions 
(described in Methods) including: planktonic growth (assessed by serial OD measurement) in a range of different carbon sources; MIC of a range 
of clinically relevant antibiotics assessed on day 3 (MIC early) and day 11 (MIC late) to quantify intrinsic and inducible drug resistance; macrophage 
infection (4 h post infection), intracellular replication (2 days post infection) and death (2 days post infection) quantified using high-content imaging of 
differentiated THP-1 cells incubated with tdTomato-expressing clinical isolates; survival and immune response of Drosophila melanogaster infected with 
clinical isolates; and clinical outcomes (lung function decline and clearance of M. abscessus from sputum samples) of infected patients. Ami, amikacin; 
Cla, clarithromycin; Clo, clofazimine; FeV1, forced expiratory volume; Fox, cefoxitin; Lin, linezolid; OD-AUC, area under the OD curve; qPCR, quantitative 
polymerase chain reaction. b, Pearson correlation coefficients within and across phenotypic groups shown as a matrix, with two-sided non-significant 
(unadjusted P > 0.05) associations shown in white.
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information provided by the STRING database (Supplementary  
Fig. 7)36. As examples, we find highly connected clusters of mamma-
lian cell entry genes, implicated in controlling adhesion, uptake and 
intracellular survival within macrophages37,38, and genes involved in 
bacterial secretion systems. In addition, we discovered a network 
of mycobactin synthesis genes (Fig. 4d), including some identi-
fied through our GWAS analysis (Fig. 3c,d) that, when silenced by 
CRISPR interference (CRISPRi) knockdown, led to similar impair-
ment of intracellular bacterial growth (Fig. 4e), supporting a func-
tional basis for these CC-DCA-derived gene networks.

Defining genetic determinants of in vivo virulence in M. absces-
sus. Finally, we sought to integrate outputs from our detailed mul-
tidimensional phenotyping, structure-guided GWAS analysis and 
DCA-based epistatic mapping, to achieve a systems-level under-
standing of the genetic basis for important pathological processes 
in M. abscessus.

We focused on in vivo infection in Drosophila, a model that rep-
licates some features of human mycobacterial infection (particu-
larly innate and cell-autonomous immune responses) (Fig. 5a)39–42. 
Among the top hits from our structure-guided GWAS analysis  

(Fig. 5b and Supplementary Fig. 8) were a deletion in a component 
of a putative Type II secretion system (MAB_0471) and a deleteri-
ous mutation in a non-ribosomal peptide synthetase (MAB_3317c). 
Both variants had independently arisen as homoplastic mutations 
across the M. abscessus phylogenetic tree (Fig. 5c), including within 
the ancestor of one of the dominant circulating clones (DCC2) 
of M. a. abscessus, responsible for several transmission networks 
among CF patients3,5. We found that isolates with either of the two 
genetic variants were associated with prolonged survival of infected 
Drosophila and more persistent clinical infection of CF patients 
(Fig. 5d and Supplementary Fig. 8).

We sought to experimentally validate both these GWAS hits 
through CRISPRi-based transcriptional silencing as described pre-
viously43. Although we found no effect of gene silencing on growth 
in liquid media, silencing of either MAB_0471 or MAB_3317c dur-
ing in vivo infection significantly increased Drosophila survival 
(Fig. 5e and Supplementary Figs. 8 and 9), indicating that these 
genes regulate M. abscessus virulence.

Our DCA analysis revealed that both these GWAS hits were part 
of a discrete network of likely epistatic genes involved in bacterial 
secretion, cell wall biosynthesis, metabolism and transcriptional 
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regulation (Fig. 5f and Supplementary Fig. 8). To experimentally 
test this predicted epistasis, we selected another gene from the 
same network (MAB_0472) and transcriptionally silenced it dur-
ing in vivo infection. We found that Drosophila survival was also 
increased by its CRISPRi knockdown (Fig. 5g), suggesting that all 
three genes are functionally interacting.

Discussion
We have shown that phenogenomic analysis can accurately iden-
tify critical gene networks responsible for virulence and other 
characteristics in poorly understood bacterial pathogens, such as  
M. abscessus. Our approach of integrating computational structural 
modelling with conventional GWAS analyses and DCA-driven 
mapping of gene interaction networks has revealed key determi-
nants of M. abscessus antibiotic resistance and virulence.

We have discovered three phenotypic clusters, independent of 
colony morphotype and subspecies, with distinct virulence char-
acteristics and clinical outcomes (not attributable to the known 
influence of macrolide resistance), that could represent distinct 
evolutionary trajectories or different points on a single patho- 
adaptive journey.

To gain systems-level understanding of M. abscessus pathobiology, 
we deployed GWAS analysis, informed by proteome-wide computa-
tional structural modelling, to a wide spectrum of in vivo, in vitro and 
clinical traits, confirming known genetic associations for antibiotic 
resistance and discovering a large number of unknown genotype–
phenotype associations, several of which we validated experimentally. 
For example, we identified MbtD, a polyketide synthase involved 
in mycobactin synthesis, that regulates intracellular survival of  
M. abscessus and therefore could be targeted therapeutically.
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We successfully explored potential epistatic interactions by 
applying DCA to discover co-evolved proteins and thus inferring 
networks of potentially functionally linked genes. We confirmed the 
ability of DCA to reveal gene–gene interactions by comparing out-
puts with orthogonally derived gene networks created from prior 
knowledge by the STRING database and experimentally validated 
the functional relatedness of some of the DCA networks by evaluat-
ing CRISPR knockdown of linked genes in both in vitro and in vivo 
infection assays.

Combining these approaches, we were able to discover sev-
eral clinically relevant mycobacterial virulence factors. For exam-
ple, by using a Drosophila infection model and structure-guided 
genomic mapping, we revealed two genes, a putative secretion 
system protein (MAB_0471) and a non-ribosomal peptide syn-
thetase (MAB_3317c), that were linked within a DCA-discovered 
functional network. We validated both genes experimentally 
and found that both were associated with clinical outcomes  
in patients.
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Our approach capturing and mapping multidimensional phe-
notypes to genotypes using structural-guided GWAS and defining 
epistatic interactions through mutational co-evolution can identify 
clinical relevant phenotypes, virulence-associated mutations and 
important pathobiological pathways that could be readily applicable 
to any pathogen, permitting rapid identification of prognostic indi-
cators and potential drug targets.

Methods
Sample collection. Samples were obtained from patients with chronic pulmonary 
disease and respiratory M. abscessus infection (baseline characteristics are given 
in Supplementary Table 1)3,5. Isolates were collected in the United Kingdom (all 
major cystic fibrosis centres), Republic of Ireland (St. Vincent’s Hospital Dublin), 
United States (University of North Carolina Chapel Hill), Sweden (Gothenborg), 
Denmark (Copenhagen and Skejby), Australia (Queensland) and the Netherlands 
(Nijmegen). Where possible, M. abscessus samples were obtained from the original 
mycobacterial growth indicator tubes or from subcultured isolates.

DNA extraction and whole-genome sequencing. M. abscessus cultures were 
subcultured on solid media and sweeps of multiple colonies collected for 
sequencing3,5. DNA was extracted with the Qiagen QIAamp DNA mini kit. 
DNA libraries were constructed in pools with unique identifiers for each isolate. 
Multiplexed paired-end sequencing was performed on the Illumina HiSeq platform. 
Detailed information on variant calling is provided in the Supporting Information.

Analysis of bacterial growth on different media. Single M. abscessus colonies 
were picked for phenotypic analysis. Bacterial growth in nutrient-rich medium 
(Middlebrook 7H9 supplemented with 0.4% glycerol and 10% albumin dextrose 
catalase enrichment) or carbon source limited media (Middlebrook 7H9 plus 
carbon source) was assessed in 96-well plates and quantified by measuring the 
optical density at 600 nm (OD600) every 12 or 24 h for 10 d. An OD600 above  
0.15 assessed in 96-well plates correlated well with log(colony-forming units) 
(c.f.u.; initial R2, 0.96; R2 after 1 d mycobacterial growth in plates, 0.97).  
The carbon sources tested were acetate (10 mM), glucose (2.5 mM), lactate 
(10 mM) and pyruvate (10 mM). Growth of each isolate across all conditions  
was assessed in quadruplicate. For each well, a logistic function was fitted  
using the R package growthcurver44. OD values on day (d)1 were used for early 
growth and the area under the logistic curve for up to d10 were used to assess 
general growth. The median of the quadruplicates was used as the representative 
phenotype. If the readout was highly variable (coefficient of variation >20%) the 
measurement was considered missing. For assessing potential growth differences 
of M. abscessus mutants, mutants were grown in glass tubes in Middlebrook 
7H9 supplemented with 0.4% glycerol and 10% ADC, and assessed daily with 
a McFarland reader. CRISPRi mutants were additionally supplemented with 
100 ng ml−1 anhydrotetracycline.

Drug resistance. Drug resistance was quantified with minimal inhibitory 
concentrations (MIC) according to the Clinical and Laboratory Standards 
Institute guidelines45. In brief, ~5 × 104 c.f.u. of each isolate were inoculated in 
increasing antibiotic concentrations in Mueller Hinton broth (amikacin, cefoxitin, 
clarithromycin and linezolid) or Middlebrook 7H9 supplemented with 0.4% 
glycerol and 10% ADC (clofazimine) per well. Experiments, including a growth 
control, were carried out in duplicate for every isolate. The reference strain  
ATCC 19977 was evaluated once per experimental batch. The MIC was recorded  
as the lowest drug concentration inhibiting visible growth at d3, d5, d11 and  
d14. The mean of both experiments (that is, the antibiotic concentration), was 
recorded and log2 transformed. Experiments in which a single MIC could not be 
obtained (for example, because of visible growth at higher drug concentrations) 
were excluded.

Transformation of clinical isolates. An expression plasmid carrying tdTomato 
(obtained from L. Kremer) was used to transform clinical isolates, grown in 10 ml 
of Middlebrook 7H9 supplemented with 0.4% glycerol, 10% ADC and 0.05% 
Tween 80 at 37°C in a shaking incubator. Competent log-phase bacteria were 
washed with 10% glycerol containing 0.05% Tween 80. Then 200 μl of the pellet 
together with 1 μg of DNA was transferred to a cuvette and electroporated (2,500 V, 
1,000 Ω, 25 μF). Transformed bacteria were recovered for 24 h in antibiotic-free 
medium and then transferred to a selective agar plate (7H11 complemented with 
10% oleic albumin dextrose catalase enrichment and 1 mg ml−1 hygromycin). Red 
colonies were picked and cultured in media containing 1 mg ml−1 hygromycin.

Generation of single cell suspensions. The isolates were obtained from frozen 
stocks and grown in Middlebrook 7H9 (supplemented with 0.4% glycerol, 10% 
OADC and 0.05% Tween 80). Exponentially growing isolates were centrifuged 
at 200g for 5 min and the supernatant passed multiple times through a 27-gauge 
needle before filtrating with a 5 μm filter (Acrodisc syringe filter). Single cell 
suspensions were standardized to a McFarland turbidity of 0.5 and frozen at −80°C.

Macrophage infection. THP-1 cells (ATCC TIB-202) were maintained in 
RPMI 1640 medium supplemented with 10% FCS, penicillin (100 U ml−1) and 
streptomycin (100 U ml−1). For infection experiments with clinical M. abscessus 
isolates, around 1 × 104 THP-1 cells per well were differentiated with 20 nM phorbol 
12-myristate 13-acetate at 37°C in 384-well imaging plates (CellCarrier-384 Ultra, 
Perkin Elmer). After 2 d, the adherent, differentiated THP-1 cells were washed and 
incubated with DMEM supplemented with 10% FCS. On d3 post differentiation 
THP-1-derived macrophages were inoculated with single cell suspensions of clinical 
M. abscessus isolates at a multiplicity of infection of 1:5, centrifuged for 10 min at 
200g and incubated at 37°C. After 2 h extracellular cells were washed off. After 2, 24 
or 48 h cells were stained with CellMask DR (Invitrogen) for 20 min, washed, fixed 
with 4% paraformaldehyde for 1 h and stained with 4,6-diamidino-2-phenylindole. 
The cell supernatant was stored at −80°C. The macrophage infection experiments 
of 245 tdTomato-expressing clinical isolates were set up in quadruplicate at once 
for all time points (2, 24 and 48 h). THP-1 infection experiments with M. abscessus 
mutants were carried out similarly, with the exception that they were done in 
96-well plates with around 1 × 105 THP-1 cells per well, and in case of CRISPRi 
mutants supplemented with 100 ng ml−1 anhydrotetracycline, starting 24 h before 
infection. After 2, 24 and 48 h, cells were washed three times, lysed with H2O and 
the number of c.f.u. was assessed. In total, three CRISPRi mutants were generated 
per gene, assessed in triplicate and analysed per gene.

High-content image acquisition and analysis. After paraformaldehyde fixation 
plates were stored at 4°C and imaged within 24 h on the high-content screening 
platform Opera Phenix (Perkin Elmer). Spinning disc confocal images of 37 
fields per well and three fluorescence channels (blue 405/456, red 561/599, 
far-red 640/706) were acquired with a ×63 water immersion objective (NA 1.15). 
Automated image analysis was performed with Columbus software (v.2.9.0, 
Perkin Elmer). The 37 fields were pooled to single wells. Blue (4,6-diamidino-
2-phenylindole) and far-red (CellMask DR) fluorescence channels were used to 
define cells and their borders. To evaluate the viability of individual macrophages, 
a supervised machine learning approach (Columbus; Perkin Elmer) based on 
nuclear, cytosolic and cell features was used to train a linear classifier, which was 
then applied to all images to classify macrophages as dead or alive. Intra- and 
extracellular mycobacteria were defined using a spot assay on the red fluorescence 
channel. For each cell, as well as the extracellular space, the spot area and mean 
fluorescence intensity were documented. Both measures were used to quantify the 
mycobacterial load (intracellular load = total sum of (spot area per cell × mean 
spot intensity per cell); extracellular load = extracellular spot area × extracellular 
mean spot intensity; total mycobacterial load = intracellular load + extracellular 
load). Wells with a cell number below 800 were removed; the median of the 
remaining wells was used. As the most meaningful outputs we reported the 
fraction of total cells infected (number of M. abscessus infected cells/total number 
of cells), the intracellular and total M. abscessus load as well as the fraction of 
cells alive (number of cells alive/total number of cells). Mycobacterial load or cell 
kinetics are reflected in the ratio d2/d0 (delta).

Cytokine assessment. The supernatant of macrophages was evaluated for 
interleukin-8 and tumour necrosis factor-α concentrations 24 h after mycobacterial 
infection. Tumour necrosis factor-α and interleukin-8 levels were measured in 25 µl 
of supernatant on a Luminex 200 instrument (Merck Millipore) using the reagents 
and protocol supplied with the Milliplex MAP Human Cytokine/Chemokine kit 
(Merck Millipore).

Drosophila infection. Isogenic flies (w1118) were maintained using standard fly 
medium (2% polenta, 10% Brewer’s yeast, 0.8% agar, 8% fructose and water) at 
25°C. Flies were infected with inducible CRISPRi mutants of M. abscessus and put 
on fly medium supplemented with tetracycline (0.2 mg ml−1) several days before 
infection. Details on fly infection procedures are provided in the Supporting 
Information. Some 400 c.f.u. were injected in 50 nl of PBS into the abdomen of 
anaesthetized 6–8-d-old male flies. Around 15 flies per condition (in total >350 
conditions) were infected to assess survival. Fly survival was assessed every 12 h 
until d10 and compared using the log-rank test.

Quantitative PCR with reverse transcription of Drosophila antimicrobial 
peptides and cytokines. At least five flies were infected with each isolate to assess 
the immune response to infection. At 28 h after infection, flies were homogenized 
in 100 μl of TRIzol (Invitrogen) and stored at −20°C. RNA was then extracted 
and complementary DNA synthesis was carried out with the RevertAid Reverse 
Transcriptase (200 U µl−1, Thermo Fisher Scientific). Quantitative PCR analyses 
were performed in duplicate using the Sensimix SYBR no-ROX kit (Bioline)46,47 
using the primers given in Supplementary Table 2.

Patient outcomes. Clinical outcome data were available for 300 CF patients (as 
reported previously3,5). Patients were classified as having cleared M. abscessus 
infection (defined as documented culture conversion or a sustained clinical 
improvement where further cultures were unavailable) or as having persistent 
infection (if cultures remained positive or the clinical state worsened where no 
cultures were available)5. Lung function decline was estimated as the percentage 

NATuRE MIcRoBIoLogy | VOL 7 | SePTeMBeR 2022 | 1431–1441 | www.nature.com/naturemicrobiology1438

http://www.nature.com/naturemicrobiology


ArticlesNaTuRe MICRobIology

change in the forced expiratory volume from the available lung function 
assessment over a period of 12 months from baseline (before infection).

Phenotype association. To assess relatedness of phenotypes and phenotypic 
groups, all phenotype pairs were correlated (Pearson correlation) and a correlation 
matrix plotted. To identify characteristic phenotypic signatures of clinical isolates, 
isolates were clustered using representative experimental phenotypes (amikacin 
MIC d11, clarithromycin MIC d11, growth d10, change in intracellular MAB load, 
macrophage cell death d2, Drosophila attacin level, mean Drosophila survival). 
Some 199 isolates with at most one missing value (52 isolates had one missing 
value) were correlated using pairwise Pearson correlation. The resulting correlation 
matrix was used as a distance measure to cluster isolates with t-SNE48 using the R 
package Rtsne. Clustering was validated with k-means clustering with a predefined 
set of three clusters. Phenotypic groups were compared using one-way analysis of 
variance or chi-squared test, as appropriate, and mapped onto the phylogeny. For 
each isolate a nearest phylogenetic neighbour was identified, thereby assessing 
whether neighbours are more likely to belong to the identical phenotypic group 
(chi-squared of each phenotypic group comparing neighbour pairs versus 
non-neighbour pairs).

Genome-wide association analysis. Two statistical genome-wide association 
approaches were employed to assess the effect of individual variants (SNPs, 
INDELs, large deletions) on phenotypes. A linear mixed model controlling for 
population structure, where the phenotype is modelled on the fixed locus effect 
and the random effect of the relatedness matrix, was used. However, controlling for 
population structure considerably reduces power for population-stratified variants23. 
Because population-stratified variants are common in bacteria, genome-wide 
associations were also analysed with a linear model. Both analyses were performed 
in GEMMA22. Hits were defined as the top 50 significant associations within a 
phenotype. Manhattan plots were generated using LocusZoom49.

Genome-wide protein structure prediction. Because the structures of most 
proteins in the M. abscessus proteome have not been resolved experimentally, it was 
necessary to model them computationally. We therefore extended our M. abscessus 
structural proteome database, Mabellini29, which provides only high-confidence, 
well-annotated structural data, to aim for comprehensive coverage of the entire 
proteome. Therefore, additional proteins were modelled with lower-confidence 
templates aided with extensive macromolecular modelling and refinement protocols. 
The multiple sequence alignments were converted into profile hidden Markov 
models (HMMs) using HH-suite3 (ref. 50), which were then used to search against a 
pdb70 (Protein Data Bank chains clustered at 70% sequence identity) database using 
Hhsearch50. The identified templates were used for comparative modelling, using 
the modified, MODELLER-based51, multi-template structure modelling pipeline of 
Larsson et al.52. In addition to structural consensus and a machine learning-based 
single-model quality assessment protocol, we also incorporated a rapid method 
for annotating the quality of protein models through comparison of their distance 
matrices53. As a result, for each of the modelled protein sequences, we obtained a set 
of theoretical models, ranked by predicted model quality.

Machine learning for assessing effects of missense mutations. To evaluate the 
effect of polymorphisms on M. abscessus protein structures, we used the models 
generated in the previous step to estimate the effect of missense mutations. We 
applied mCSM28, which, through graph-based signatures, represents the structural 
environment of wild-type residues and learns which mutations are detrimental to 
protein structure. For each of the mutations, one or more modelled structures have 
been used.

Comparative modelling of MAB_2119c (MbtD). The model of putative 
polyketide synthase (mbtD, MAB_2119c) was produced as part of Mabellini using 
the following models: 2hg4, 3tzz and 2jgp29. The Mabellini-derived structure was 
then subjected to extensive relaxation using Rosetta54 suite, in both a wild-type 
and mutated variants, where the lowest energy structure has been chosen for 
subsequent analysis.

Ranking of predicted functional impact of SNPs. Based on SNP annotation 
(intergenic, synonymous, inframe INDEL, frameshift) and structural modelling 
predictions of functional impact (above), variants were allocated to four groups: 
low-effect variants (intergenic and synonymous SNPs; grey), low–moderate-effect 
variants (inframe INDEL, missense mutations with lowest tertile mCSM scores; 
green), moderate–high-effect variants (missense mutations with middle tertile 
mCSM scores; blue) and high-effect variants (frameshift variant, large deletion, 
start/stop alteration and missense mutations with highest tertile mCSM scores; red).

Summary of GWAS hits. To summarize the identified variants across all 
phenotypes, up to five significant, highest ranking hits were extracted from each 
genotype–phenotype association (a single high- or moderate-effect variant per 
gene). In total, 2 × 58 genotype–phenotype associations (linear mixed model and 
linear model) were performed. To assess genetic linkage between these variant hits, 
we calculated R2 using PLINK55.

Identification of homologues and construction of multiple sequence 
alignments. For each of the proteins in the M. abscessus proteome, we have 
constructed a multiple sequence alignment of homologous proteins, which forms 
a basis for subsequent work. The alignments have been constructed using HHblits, 
a fast, highly sensitive, HMM–HMM-based sequence search method56 and used 
the bundled nr30 database. In the interest of exploring a broader evolutionary 
landscape of proteins in question, we have decided to include proteins with an 
E-value ≤10−4 in the alignment.

Genome-wide evolutionary coupling inference. Exponential models to 
understand co-evolution in biological sequences have been applied to protein 
structure prediction57, and more recently to bacterial genomic sequences. We have 
previously shown that the method genomeDCA33 can be effectively employed 
to understand the co-evolution of Streptococcus pneumoniae34, and is extensible 
and applicable to other systems32,34,58. Here, we employ an approach that blends 
genomeDCA33 and CC-DCA32 to ensure unbiased sampling of evolutionary 
pressures onto individual positions and pairs of positions across genomic 
sequences. CC-DCA32 permits genome-wide coupling inference without needing 
to resort to extensive sampling, as proposed in genomeDCA33. We modified this 
approach to elucidate the effects of low-frequency alleles across the entire  
M. abscessus genome. We conducted at least 60,000 runs, each subsampling 25% 
of positions in the genome. We defined variant–variant couplings as statistically 
significant based on the Gumbel distribution (as described previously33) 
corresponding to an FDR of <10−6. Variant–variant pairs that spanned a distance 
of more than 100 bp were ranked by coupling strength and visualized on the 
M. abscessus genome using the Circos package59. Subsequently, we pooled the 
statistically significant couplings by gene–gene pairs, and ranked them by the 
number of couplings. Cytoscape was used to plot the network of the 1,000 strongest 
gene–gene couplings, highlighting the number of couplings (edge width), coupling 
strength (edge colour) and predicted gene function (node colour)60. For CC-DCA 
validation, we assessed the protein–protein interactions of putative functional 
clusters with STRING v.11.5 (nodes, observed and expected edges, protein-protein 
interaction enrichment P value)36.

Generation of CRISPRi mutants. Analogous to CRISPR-mediated gene silencing 
in Mycobacterium tuberculosis and Mycobacterium smegmatis, we established a 
CRISPRi platform in M. abscessus35,43,61. M. abscessus ATCC 19977 was transformed 
with pTetInt-dCas9 and a second vector (pGRNAz) containing the small-guide 
RNA cassette. For each gene, two oligonucleotides were synthesized (forward 
and reverse), annealed and cloned into pGRNAz. Oligonucleotide sequences are 
outlined in Supplementary Table 3. The strains were grown in Middlebrook 7H9 
broth (supplemented with 0.4% glycerol, 10% ADC and 0.05% Tween 80) and 
selected with hygromycin (1 mg ml−1) and zeocin (300 μl ml−1). dCas9 and sgRNA 
expression were under the control of a tet-inducible promotor. To achieve maximal 
gene repression cultures were supplemented with 100 ng ml−1 anhydrotetracycline. 
As controls, an empty vector control and YidC (essential gene) knockdown were 
used. To validate CRISPR-induced transcriptional repression we complemented 
knockdown mutants with rescue vectors, in which MAB_0471 or MAB_472 
containing silent mutations at the CRISPR-binding sites were cloned into pGRNAz 
under a strong promoter. In these mutants, CRISPR guides bind and repress 
chromosomal gene expression, but not the mutated gene expressed in the plasmid.

Generation of knockout and complemented mutants. To validate structural 
predictions, a MbtD knockout mutant was generated on the ATCC 19977 
background via recombineering62. In brief, primers which amplified the 1,000-bp 
flanking regions up- and downstream of the respective gene were designed and 
a zeocin cassette was cloned between these fragments to synthetize an allelic 
exchange substrate. pJV53 was used to generate the recombineering strain 
ATCC19977-pJV53, which was grown to the exponential phase and induced with 
0.2% acetamide44. The allelic exchange substrate was then electroporated into 
ATCC19977-pJV53 and plated on Middlebrook 7H11 agar supplemented with 
10% OADC containing 300 μg ml−1 zeocin and then grown in broth culture to 
remove pJV53. To complement ΔMAB_2119, MAB_2119 was PCR-amplified, 
digested and ligated into pMV306-hsp60. To generate ΔMAB_2119 + Ile256Thr 
and ΔMAB_2119 + Thr410Ala complemented mutants, pMV306-MAB_2119 
was PCR-amplified using oligonucleotides containing the chosen mutation 
(Supplementary Table 3). These plasmids were then electroporated into 
ΔMAB_2119 on Middlebrook 7H11 agar supplemented with 10% OADC and 
kanamycin (200 μg ml−1) and confirmed by PCR.

Ethics approval. Ethical approval was obtained from the National Research 
Ethics Service (NRES; REC reference: 12/EE/0158) and the National Information 
Governance Board (NIGB; ECC 3-03 (f)/2012) for centres in England and Wales; 
from NHS Scotland Multiple Board Caldicott Guardian Approval (NHS Tayside 
AR/SW) for Scottish centres; and respective review boards from Queensland 
(Australia) and the University of North Carolina (USA).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For data collection no software was used.

Data analysis For data analysis the following software was used: BWA 0.7.13, Bcftools 1.7, SNPeff 4.3, sambamba 0.6.7, fastTree 2.1.11, itol v5, PLINK 1.7, 
Gemma 0.98, GEC 1.0, Columbus (2.9.0, Perkin Elmer), Rtsne 0.15, R Growthcurver 4.0, LocusZoom 1.4, Mabellini, HH-suite3, Hhsearch, 
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All sequencing data of this study is deposited in the European Nucleotide Archive with the respective accession codes provided in Supplementary Table 6. Source 
data are provided with this paper.  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The required GWAS sample sizes were based on assumed effect sizes of antimicrobial resistance and the number of available samples. With 
this sample sizes we could identify several unknown mechanisms; however it is likely that a much larger data set  (n>1000) would have 
revealed even more information. 

Data exclusions M. abscessus isolates were phenotyped in replicates. If replicate variation was too large (as outlined in the online supplement), the 
phenotypic information was removed from final analysis.

Replication Mycobacterial phenotyping was done in replicates and all replicates were analysed, except those not meeting quality criteria (as outlined in 
the online Supplement).

Randomization Not applicable. Samples were not allocated to experimental groups.

Blinding Not applicable. Samples were not allocated to experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) ATCC TIB-202 (THP-1) was purchased direct from ATCC by us

Authentication The cell line was not authenticated by us.

Mycoplasma contamination Mycoplasma contamination was ruled out on a monthly base.

Commonly misidentified lines
(See ICLAC register)

No misidentified cell lines were used in the study. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Drosophila melanogaster (w1118), male 6-8 day old

Wild animals No wild animals were used in the study. 

Field-collected samples No field-collected samples were used in the study. 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration N/A

Study protocol N.A

Data collection Stored patient samples (bacterial isolates) and clinical metadata were retrospectively collected. 300 patients with chronic respiratory 
conditions (cystic fibrosis) and pulmonary Mycobacterium abscessus infection. Baseline characteristics are outlined in Supplementary 
Table 5. Retrospective clinical metatdata of patients assessed during routine clinical assessments was used. No patient was recruited 
for this study. Ethical approval to use clinical metadata was obtained from the National Research Ethics Service (NRES; REC reference: 
12/EE/0158) and the National Information Governance Board (NIGB; ECC 3-03 (f)/2012) for centres in England and Wales; from NHS 
Scotland Multiple Board Caldicott Guardian Approval (NHS Tayside AR/SW) for Scottish centres; and respective review boards from 
Queensland (Australia) and the University of North Carolina (USA). 

Outcomes Patients were classified as having cleared M. abscessus infection (defined as documented culture conversion or a sustained clinical 
improvement where further cultures were unavailable) or as having persistent infection (if cultures remained positive or the clinical 
state worsened where no cultures were available).  
Lung function decline was estimated as the percentage change in the forced expiratory volume (FEV1) from the available lung 
function assessment over a period of 12 months from baseline (before infection). 
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